Transcriptome Wide Annotation of Eukaryotic RNase III Reactivity and Degradation Signals

نویسندگان

  • Jules Gagnon
  • Mathieu Lavoie
  • Mathieu Catala
  • Francis Malenfant
  • Sherif Abou Elela
چکیده

Detection and validation of the RNA degradation signals controlling transcriptome stability are essential steps for understanding how cells regulate gene expression. Here we present complete genomic and biochemical annotations of the signals required for RNA degradation by the dsRNA specific ribonuclease III (Rnt1p) and examine its impact on transcriptome expression. Rnt1p cleavage signals are randomly distributed in the yeast genome, and encompass a wide variety of sequences, indicating that transcriptome stability is not determined by the recurrence of a fixed cleavage motif. Instead, RNA reactivity is defined by the sequence and structural context in which the cleavage sites are located. Reactive signals are often associated with transiently expressed genes, and their impact on RNA expression is linked to growth conditions. Together, the data suggest that Rnt1p reactivity is triggered by malleable RNA degradation signals that permit dynamic response to changes in growth conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNase III-Mediated Silencing of a Glucose-Dependent Repressor in Yeast

Members of the RNase III family are found in all species examined with the exception of archaebacteria, where the functions of RNase III are carried out by the bulge-helix-bulge nuclease (BHB). In bacteria, RNase III contributes to the processing of many noncoding RNAs and directly cleaves several cellular and phage mRNAs. In eukaryotes, orthologs of RNase III participate in the biogenesis of m...

متن کامل

The catalytic efficiency of yeast ribonuclease III depends on substrate specific product release rate

Members of the ribonuclease III (RNase III) family regulate gene expression by triggering the degradation of double stranded RNA (dsRNA). Hundreds of RNase III cleavage targets have been identified and their impact on RNA maturation and stability is now established. However, the mechanism defining substrates' reactivity remains unclear. In this study, we developed a real-time FRET assay for the...

متن کامل

Conservation of RNase III processing pathways and specificity in hemiascomycetes.

Rnt1p, the only known Saccharomyces cerevisiae RNase III endonuclease, plays important functions in the processing of precursors of rRNAs (pre-rRNAs) and of a large number of small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). While most eukaryotic RNases III, including the Schizosaccharomyces pombe enzyme Pac1p, cleave double-stranded RNA without sequence specificity, Rnt1p cleavag...

متن کامل

Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III

Members of the ribonuclease III family are the primary agents of double-stranded (ds) RNA processing in prokaryotic and eukaryotic cells. Bacterial RNase III orthologs cleave their substrates in a highly site-specific manner, which is necessary for optimal RNA function or proper decay rates. The processing reactivities of Escherichia coli RNase III substrates are determined in part by the seque...

متن کامل

Transcriptome-wide analysis of uncapped mRNAs in Arabidopsis reveals regulation of mRNA degradation.

The composition of the transcriptome is determined by a balance between mRNA synthesis and degradation. An important route for mRNA degradation produces uncapped mRNAs, and this decay process can be initiated by decapping enzymes, endonucleases, and small RNAs. Although uncapped mRNAs are an important intermediate for mRNA decay, their identity and abundance have never been studied on a large s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015